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1 Introduction 

A lot of effort is currently being put into designing quantum algorithms and hardware that could 

provide an advantage over classical computers. This advantage can take the form of more 

accurate results, a faster convergence, or even a lower energy consumption. These solutions are 

developed on very different platforms, using a wide range of technologies. The most prominent 

ones are based on trapped ions [1, 2], Josephson junctions [3, 4] and Rydberg neutral atoms [5, 

6]. In each case, the information is stored in a two-level system constituting the qubits. Different 

sets of quantum gates [7] can then be implemented and, for a given quantum algorithm, the 

effective quantum circuits can vary significantly across platforms. Additionally, there are 

problems for which even the Noisy Intermediate Scale Quantum (NISQ) processors [8] are 

expected to provide an advantage. This could be obtained from an analog approach where, as 

opposed to the case of digital quantum computing, the quantum operations are not divided into 

discrete consecutive steps (gates) but are rather the result of a time-dependent control of the 

Hamiltonian acting upon the qubits. This solution will be very intrinsically problem- and 

platform-specific, further complicating any comparisons.  

Neutral atom quantum processors are well suited to solving combinatorial graph problems. In 

fact, the Ising Hamiltonian describing the dynamics of the qubits is closely related to the cost 

function to be minimized. Solving the problems is then equivalent to finding the ground state of 

the system, which can be achieved by adiabatic annealing, as it has been shown in the case of 

the Maximum Independent Set (MIS) problem [5]. Although most QAOA applications focus on 

gate-based models of quantum computing, a promising avenue for noisy devices is represented 

by analog variational algorithms. The analog mode of operation involves the evolution of a 

quantum system under a continuously controllable resource Hamiltonian rather than the discrete 

application of a fixed set of quantum gates.  

Whereas the successful implementation of a gate-based algorithm is limited by the absence of 

error correction on current devices, an analog algorithm is intrinsically more resilient to noise 

[5]. In this framework, the role of Rydberg atom arrays is recognized as a prominent example of 

how the ground state of a quantum Hamiltonian directly maps to the solution of a hard 
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combinatorial graph problem, MIS on unit-disk graphs for instance.  

On neutral atom platforms, preparing specific quantum states is usually achieved by pulse 

shaping, i.e., by optimizing the time-dependence of the Hamiltonian related to the system. This 

process can be extremely costly, as it requires sampling the final state in the quantum processor 

many times. Hence, determining a good pulse is one of the most important bottlenecks of the 

analog approach. In this work, we propose a novel protocol for solving hard combinatorial 

graph problems that combines variational analog quantum computing and machine learning. 

Our numerical simulations show that the proposed protocol can reduce dramatically the number 

of iterations to be run on the quantum device. Finally, we assess the quality of our approach by 

estimating the related Q-score, a recently proposed metric aimed at benchmarking QPUs.  

 

2 Methodology 

To the best of our knowledge, only two machine learning techniques were proposed in order to 

accelerate Quantum Approximate Optimization Algorithms (QAOAs). To solve combinatorial 

problems, Khairy et al [9, 10] propose two different machine learning-based approaches to find 

optimal QAOA parameters: a kernel density estimator-based model [9] that learns generative 

models of optimal circuit parameters, and a reinforcement learning-based model [10] that can 

learn different policies to predict (near-)optimal QAOA parameters. Comparing both proposed 

approaches and the optimization loop under limited runtime constraints, the authors showed that 

the optimality gap could be considerably reduced. Even though different machine learning- 

based approaches were proposed in order to find near-optimal parameters for circuit-based 

QAOA algorithms, no attention has been given to analog quantum processing on neutral-atom 

QPUs.  

The main objective of our supervised machine learning-based approach is to automatically 

provide: i) the Rabi frequency and detuning values on different instants of the pulse, and ii) the 

total duration of the pulse. Hence, the out-coming pulse is specifically tailored to evolve the 

system to states that represent (near-)optimal solutions for a given combinatorial graph problem 

instance. In what follows, we detail each step of the proposed machine learning algorithm.  

In this work, we focus on the Maximum Cut (MaxCut) and Maximum Independent Set (MIS) 

problems. While the MaxCut problem is equivalent to minimizing the Hamiltonian of a spin 

glass, the solutions of the MIS problem on unit-disk graphs can be encoded as the ground state 

of the Hamiltonian describing neutral-atoms devices [5].  

 

2.1 Pulse prediction  

The way combinatorial graph problems are usually solved with quantum hardware involves the 

optimal tuning of a set of parameters. This is usually done via an optimization loop that is 
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applied to each instance of the problem, which is time and resource consuming. To overcome 

both time and resource limitations, we propose a new supervised machine learning- based 

approach that automates the parameter choices and creates pulse sequences for analog quantum 

processes. Our model is based on the Chained Multi-Target Regression Algorithm (CMTRA) 

[11], which is generally used to predict multiple target values that are dependent upon the input 

and upon each other.  

By predicting essential pulse parameters, one can considerably scale up quantum algorithms and, 

hence, solve bigger instances of complex combinatorial problems without dedicated 

optimization loops. The main objective of our supervised machine learning-based approach is to 

automatically provide: i) the Rabi frequency and detuning values on different instants of the 

pulse, and ii) the total duration of the pulse. Hence, the out-coming pulse is specifically tailored 

to evolve the system to states that represent (near-)optimal solutions for a given combinatorial 

graph problem instance.  

 

2.2 Q-Score 

The Q-score metric [12] was developed to benchmark Quantum Processing Units at a time when 

commercially viable NISQ applications are becoming a reality. It is application-centric, 

hardware-agnostic, and can be applied equally effectively on current machines as well as future 

large-scale devices. For these reasons, the Q-score represents to date one of the best attempts at 

establishing a practical standardized benchmark that can be monitored over time to assess the 

evolution of quantum computers in solving real problems. Essentially, the Q-score is the largest 

number of qubits for which a solution to the problem is at least 20% better than the average 

random solution.  

 

3 Numerical Results 

n our results, the score obtained stayed above the 20%, even in the presence of noise, up to the 

largest graphs we were able to simulate with noise in a reasonable amount of time. In order to 

determine the Q-score of the method and platform we need to extrapolate the results to larger 

problem sizes. To this end, we fit an exponential decay on the tail of the size dependence of the 

score β(n) = β0e−n/n0. The Q-score is then given by Qscore = n0log(5β0). The results are 

summarized in 1. For both problems, the Q-score is of the order of 80 (except for MIS of 

non-UD graphs on noisy devices), to be compared with the Q-score determined in [12] for 

QAOA on state-of-the-art gate-based QC platforms. In particular, the presence of noise does not 

seem to significantly lower the score. Indeed, this specific behavior of analog quantum 

computing is very different from what was observed in the digital quantum circuits [12], where 

the score degrades faster for larger circuit depths. The comparison between the two approaches 
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is not easy, as there is no equivalent to the circuit depth here. However, this example highlights 

the resilience to noises of the analog approach. For an in-deph overview of our work, one may 

refer to [13].  

Table 1: Estimated Q-scores for MIS and MaxCut problems on Unit-Disk and non-UD graphs 

and in a noisy and noiseless settings  

  Noiseless Noisy 

MIS UD graphs 74±5 80±7 

Non-UD graphs 80±10 63±4 

MaxCut UD graphs 79±11 75±7 

 Non-UD graphs 80±6 91±16 

3 Concluding remarks 

In this study, we demonstrated that it is possible, thanks to machine learning, to develop an 

efficient way of solving combinatorial graph problems on analog quantum processing units such 

as neutral atom platforms. Determining a good pulse, as well as a good embedding, to solve the 

problem on a given graph is one of the most important bottlenecks of the analog approach. By 

providing directly a good pulse, our method allows restricting the runs on the Quantum device 

to the sampling of a given final state, reducing dramatically the number of shots and hence the 

time-to-solution. We showed that it is possible to train a model to predict a pulse that prepares a 

final state with a sufficient overlap of (near-) optimal solutions of the problem’s instances.  

In this study, we chose a training set that was not fully optimized, so that its generation would 

not take too long. If one would be to improve the performance, one step would be to improve 

the training set, both by pushing further optimization for each of its instances, as well as 

increasing the largest graph order (i.e., number of nodes) it contains. Also, the quality of the 

result depends on the number of shots of the final state one allows taking (the time budget). One 

could also try to specifically train the model for a fixed number of shots. Alternatively, one 

could try a reinforcement learning scheme. In that case, the training is expected to take longer, 

but one would spare the generation of the training data set. A similar approach could be applied 

to other combinatorial graph problems.  

Furthermore, each model we trained in this study had its own embedding strategy. It is worth 

mentioning that, because of the difficulty of embedding a generic graph, it may be more 

efficient to use an alternative representation of the initial problem. For example, instead of 

solving the MIS problem on a graph, one could solve the equivalent Maximum Clique problem 

on the complement graph.  

Our results highlight the potential of NISQ-era, analog quantum computing. Even though the 

need to develop problem-specific frameworks may seem to contradict the goal of speeding-up 

classical calculations, it could lead to the first quantum advantageous solution.  
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